The Enskog theory for transport coefficients of simple fluids with continuous potentials

نویسندگان

  • Kunimasa Miyazaki
  • Biman Bagchi
چکیده

The Enskog theory for the self-diffusion coefficient for fluids with continuous potentials, such as the Lennard-Jones, is developed. Starting from the Green–Kubo formula ~rather than the conventional kinetic equation! and introducing the similar assumptions upon which the Boltzmann equation is based, we derived a general expression for the memory kernel and the self-diffusion coefficient. The numerical analysis is implemented for the Lennard-Jones fluid. The time-dependent memory kernel is calculated and compared with the latest molecular dynamics simulations. Excellent agreement is obtained at the low density. The self-diffusion coefficient is evaluated for various temperatures and densities. The ratio of the Enskog self-diffusion coefficient to the simulation value is plotted against density. Significant difference of this density dependence from that for the hard-sphere fluid is observed. In particular, the well-known maximum observed ~in the diffusion versus density plot! for the hard sphere fluid is found to be completely absent in the Lennard-Jones fluid. Our results reduce to the conventional Chapman–Enskog expression in the low density limit and can be applicable to the systems with singular potentials such as the hard sphere. © 2001 American Institute of Physics. @DOI: 10.1063/1.1355978#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dense fluid transport for inelastic hard spheres.

The revised Enskog theory for inelastic hard spheres is considered as a model for rapid flow granular media at finite densities. A normal solution is obtained via the Chapman-Enskog method for states near the local homogeneous cooling state. The analysis is performed to first order in the spatial gradients, allowing identification of the Navier-Stokes order transport coefficients associated wit...

متن کامل

Modified Enskog kinetic theory for strongly coupled plasmas.

Concepts underlying the Enskog kinetic theory of hard-spheres are applied to include short-range correlation effects in a model for transport coefficients of strongly coupled plasmas. The approach is based on an extension of the effective potential transport theory [S. D. Baalrud and J. Daligault, Phys. Rev. Lett. 110, 235001 (2013)] to include an exclusion radius surrounding individual charged...

متن کامل

Cellular Automaton Fluids 1: Basic Theory

Continuum equations are derived for the large-scale behavior of a class of cellular automaton models for fluids. The cellular automata are discrete analogues of molecular dynamics, in which particles with discrete velocities populate the links of a fixed array of sites. Kinetic equations for microscopic particle distributions are constructed. Hydrodynamic equations are then derived using the Ch...

متن کامل

Transport Coefficients in Some Stochastic Models of the Revised Enskog Equation

A stochastic model of the revised Enskog equation is considered. A choice of the smearing function suggested by the work of Leegwater ([1]) is used to apply the model to the repulsive part of the Lennard-Jones potential and the inverse-power soft-sphere potential. The virial coefficients obtained from the equilibrium properties of the models are in excellent agreement with the known exact coeff...

متن کامل

Viscosity Calculation of Supercritical Gases Based on the Rainwater-Friend Theory and the Modified Enskog Theory

A new correlation function for the calculation of viscosity for five typical supercritical gases is presented using the rainwater-Friend and modified Enskog theory. It is shown that by using accurate value for the thermal pressure and co-volume in the modified Enskog theory, this correlation function is suitable for calculation of the viscosity of supercritical gases, without any density an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001